Date of Award
Winter 2007
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mechanical & Aerospace Engineering
Program/Concentration
Aerospace Engineering
Committee Director
Osama A. Kandil
Committee Member
Oktay Baysal
Committee Member
Chuh Mei
Committee Member
Duc T. Nguyen
Abstract
Supersonic travel over land would be a reality if new aircraft are designed such that they produce quieter ground sonic booms, no louder than 0.3 psf according to the FAA requirement. An attempt is made to address the challenging goal of predicting the sonic boom focusing effects and mitigate the sonic boom ground over pressure for delta wing geometry.
Sonic boom focusing is fundamentally a nonlinear phenomenon and can be predicted by numerically solving the nonlinear Tricomi equation. The conservative time domain scheme is developed to carry out the sonic boom focusing or super boom studies. The computational scheme is a type differencing scheme and is solved using a time-domain scheme, which is called a conservative type difference solution. The finite volume method is used on a structured grid topology. A number of input signals Concorde wave, symmetric and ax symmetric ramp, flat top and typical N wave type are simulated for sonic boom focusing prediction. A parametric study is launched in order to investigate the effects of several key parameters that affect the magnitude of shock wave amplification and location of surface of amplification or "caustics surface." A parametric studies includes the effects of longitudinal and lateral boundaries, footprint and initial shock strength of incoming wave and type of input signal on sonic boom focusing.
Another very important aspect to be looked at is the mitigation strategies of sonic boom ground signature. It has been decided that aerodynamic reshaping and geometrical optimization are the main goals for mitigating the ground signal up to the acceptance level of FAA. Biconvex delta wing geometry with a chord length of 60 ft and maximum thickness ratio of 5% of the chord is used as a base line model to carry out the fundamental research focus. The wing is flying at an altitude 40,000 ft with a Mach number of 2.0. Boom mitigation work is focused on investigating the effects of wing thickness ratio, wing camber ratio, wing nose angle and dihedral angle on mitigating the sonic-boom ground signature.
Optimal shape design for low sonic boom ground signature and least degradation of aerodynamic performance are the main goals of the present work. Response surface methodology is used for carrying out wing shape optimization. Far-field computations are carried out to predict the sonic boom signature on the ground using the full-potential code and the Thomas ray code.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/hx9q-ja15
ISBN
9780549329459
Recommended Citation
Khasdeo, Nitin.
"Sonic Boom Focusing Prediction and Delta Wing Shape Optimization for Boom Mitigation Studies"
(2007). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/hx9q-ja15
https://digitalcommons.odu.edu/mae_etds/72