Document Type

Article

Publication Date

2022

DOI

10.1111/jace.18527

Publication Title

Journal of the American Ceramic Society

Volume

105

Issue

9

Pages

5598-5610

Abstract

The role of high-frequency alternating current (AC) electric field in the assembly of alumina particles in aqueous media was investigated. Field–particle interactions were in situ investigated for coarse and fine powder particles in very dilute suspensions. For both coarse and fine particles, AC field-induced assembly led to the formation of chains of particles within a minute, which were aligned in the field direction. However, a much finer network of particle chains evolved in fine particle suspensions. Threshold field strength for chain formation was also lower for fine particles (28 V/mm) than for coarse particles (50 V/mm), suggesting stronger interactions for finer particles. Chain length increased with both field strength and field duration. Chain formation was attributed to mutual dielectrophoretic (DEP) interaction forces. Increase in DEP forces with field strength resulted in enhanced interactions. For finer particles, decreasing interparticle distance might have favored stronger interactions. Suspension microstructure was disrupted as soon as the field was removed. However, higher field duration was associated with an improved pattern stability and retention following the field removal. Finally, particle motion was studied in deliberately applied spatially nonuniform AC field, which revealed different mechanisms of chain formation for coarse (negative-DEP) and fine (positive-DEP) particles.

Comments

© 2022 The Authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), which permits use and distribution in any medium,provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Original Publication Citation

John, J. E., Qian, S., & Ghosh, D. (2022). Assembly of alumina particles in aqueous suspensions induced by high‐frequency AC electric field. Journal of the American Ceramic Society, 105(9), 5598-5610. https://doi.org/10.1111/jace.18527

Share

COinS