Date of Award
Summer 8-2020
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics & Statistics
Program/Concentration
Computational and Applied Mathematics
Committee Director
N. Rao Chaganty
Committee Member
Lucia Tabacu
Committee Member
Sandipan Dutta
Committee Member
Hadiza Galadima
Abstract
Dependent longitudinal binary data are prevalent in a wide range of scientific disciplines, including healthcare and medicine. A popular method for analyzing such data is the multivariate probit (MP) model. The motivation for this dissertation stems from the fact that the MP model fails even the binary correlations are within the feasible range. The reason being the underlying correlation matrix of the latent variables in the MP model may not be positive definite. In this dissertation, we study alternatives that are based on D-vine pair-copula models. We consider both the serial dependence modeled by the first order autoregressive (AR(1)) and the equicorrelated correlation structures. Simulation results show that our model is more effective than MP model. Some real life data analysis are presented to show usefulness of our models. We also consider a general situation where the marginal distributions are ordered multinomial. We extend the D-vine pair-copula model to handle multinomial longitudinal data, and compare the generated probability distributions with other methods that are available in R packages.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/yajd-fq74
ISBN
9798678108470
Recommended Citation
Lin, Huihui.
"D-Vine Pair-Copula Models for Longitudinal Binary Data"
(2020). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/yajd-fq74
https://digitalcommons.odu.edu/mathstat_etds/114
ORCID
0000-0001-8484-2501