Date of Award
Summer 1998
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics & Statistics
Program/Concentration
Computational and Applied Mathematics
Committee Director
Hideaki Kaneko
Committee Member
John J. Swettis
Committee Member
Richard D. Noren
Committee Member
Fang Q. Hu
Committee Member
Doug Price
Abstract
In this thesis, we investigate the superconvergence phenomenon of the iterated numerical solutions for the Fredholm integral equations of the second kind as well as a class of nonliner Hammerstein equations. The term superconvergence was first described in the early 70s in connection with the solution of two-point boundary value problems and other related partial differential equations. Superconvergence in this context was understood to mean that the order of convergence of the numerical solutions arising from the Galerkin as well as the collocation method is higher at the knots than we might expect from the numerical solutions that are obtained by applying a class of piecewise polynomials as approximating functions. The type of superconvergence that we investigate in this thesis is different. We are interested in finding out whether or not we obtain an enhancement in the global rate of convergence when the numerical solutions are iterated through integral operators. A general operator approximation scheme for the second kind linear equation is described that can be used to explain some of the existing superconvergence results. Moreover, a corollary to the general approximation scheme will be given which can be used to establish the superconvergence of the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for Hammerstein and weakly singular Hammerstein equations and its corresponding superconvergence phenomena for the iterated solutions. The type of regularities that the solution of weakly singular Hammerstein equations possess is investigated. Subsequently, we establish the singularity preserving Galerkin method for Hammerstein equations. Finally, the superconvergence results for the iterated solutions corresponding to this method will be described.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/f74r-nf52
ISBN
9780599059580
Recommended Citation
Padilla, Peter A..
"Superconvergence in Iterated Solutions of Integral Equations"
(1998). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/f74r-nf52
https://digitalcommons.odu.edu/mathstat_etds/44