Date of Award
Winter 2010
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics & Statistics
Program/Concentration
Computational and Applied Mathematics
Committee Director
N. Rao Chaganty
Committee Member
Dayanand Naik
Committee Member
Michael Doviak
Committee Member
Larry Filer
Abstract
This dissertation deals with modeling and statistical analysis of longitudinal and clustered binary data. Such data consists of observations on a dichotomous response variable generated from multiple time or cluster points, that exhibit either decaying correlation or equi-correlated dependence. The current literature addresses modeling the dependence using an appropriate correlation structure, but ignores the feasible bounds on the correlation parameter imposed by the marginal means.
The first part of this dissertation deals with two multivariate probability models, the first order Markov chain model and the multivariate probit model, that adhere to the feasible bounds on the correlation. For both the models we obtain maximum likelihood estimates for the regression and correlation parameters, and study both asymptotic and small-sample properties of the estimates. Through simulations we compare the efficiency of the two methods and demonstrate that neither is uniformly superior over the other.
The second part of this dissertation deals with marginal models, an alternative to multivariate probability models. We discuss the generalized estimating equations and the quadratic inference function methods for estimating the regression parameter in marginal models. Relative efficiency calculations show these methods when compared to the likelihood estimates could result in significant loss in efficiency for highly correlated data. We also propose a modified quadratic inference function method and demonstrate through efficiency calculations this is an improvement of the original quadratic inference function approach. The final part of this dissertation deals with methods for constructing higher order Markov chain models using copulas.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/69t2-c482
ISBN
9781124453057
Recommended Citation
Yang, Weiming.
"Analysis of Models for Longitudinal and Clustered Binary Data"
(2010). Doctor of Philosophy (PhD), Dissertation, Mathematics & Statistics, Old Dominion University, DOI: 10.25777/69t2-c482
https://digitalcommons.odu.edu/mathstat_etds/74
Included in
Analysis Commons, Applied Statistics Commons, Longitudinal Data Analysis and Time Series Commons