Document Type

Article

Publication Date

1990

DOI

10.1016/0021-9045(90)90028-o

Publication Title

Journal of Approximation Theory

Volume

61

Issue

1

Pages

118-130

Abstract

(First paragraph) For 1 ≤ p < ∞, let Lp, denote the Banach space of pth power Lebesgue integrable functions on [0, l] ∥ƒ∥p = (∫¹₀∣ƒ∣ p)1/p Let Mp denote the set of nondecreasing functions in Lp. For l < p < ∞ , each ƒ∊Lp has a unique best approximation from Mp, while, for p = 1, existence of a best approximation from M1 follows from Proposition 4 of [6].

Comments

Web of Science: "Free full-text from publisher -- Elsevier open archive."

Copyright © 1990 Published by Elsevier Inc.

Original Publication Citation

Swetits, J. J., & Weinstein, S. E. (1990). Construction of the best monotone-approximation on Lp [0,1]. Journal of Approximation Theory, 61(1), 118-130. doi:10.1016/0021-9045(90)90028-o

Included in

Mathematics Commons

Share

COinS