Document Type
Article
Publication Date
1990
DOI
10.1016/0021-9045(90)90028-o
Publication Title
Journal of Approximation Theory
Volume
61
Issue
1
Pages
118-130
Abstract
(First paragraph) For 1 ≤ p < ∞, let Lp, denote the Banach space of pth power Lebesgue integrable functions on [0, l] ∥ƒ∥p = (∫¹₀∣ƒ∣ p)1/p Let Mp denote the set of nondecreasing functions in Lp. For l < p < ∞ , each ƒ∊Lp has a unique best approximation from Mp, while, for p = 1, existence of a best approximation from M1 follows from Proposition 4 of [6].
Original Publication Citation
Swetits, J. J., & Weinstein, S. E. (1990). Construction of the best monotone-approximation on Lp [0,1]. Journal of Approximation Theory, 61(1), 118-130. doi:10.1016/0021-9045(90)90028-o
Repository Citation
Swetits, J. J. and Weinstein, S. E., "Construction of the Best Monotone Approximation on Lp [0, 1]" (1990). Mathematics & Statistics Faculty Publications. 112.
https://digitalcommons.odu.edu/mathstat_fac_pubs/112
Comments
Web of Science: "Free full-text from publisher -- Elsevier open archive."
Copyright © 1990 Published by Elsevier Inc.