Document Type

Article

Publication Date

1998

DOI

10.1006/jath.1996.3108

Publication Title

Journal of Approximation Theory

Volume

92

Issue

1

Pages

101-115

Abstract

We say that a subset G of C0(T, ℝk) is rotation-invariant if [Qg: gG]=G for any k x k orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional subspace of C0(T, ℝk) on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if PG(ƒ) is strongly unique of order 2 whenever PG(ƒ) is a singleton.

Comments

Web of Science: :Free full-text from publisher -- Elsevier open archive.

© 1998 Academic Press

Original Publication Citation

Bartelt, M., & Li, W. (1998). Characterization of generalized Haar spaces. Journal of Approximation Theory, 92(1), 101-115. doi:10.1006/jath.1996.3108

Included in

Mathematics Commons

Share

COinS