Document Type
Article
Publication Date
1998
DOI
10.1006/jath.1996.3108
Publication Title
Journal of Approximation Theory
Volume
92
Issue
1
Pages
101-115
Abstract
We say that a subset G of C0(T, ℝk) is rotation-invariant if [Qg: g ∈ G]=G for any k x k orthogonal matrix Q. Let G be a rotation-invariant finite-dimensional subspace of C0(T, ℝk) on a connected, locally compact, metric space T. We prove that G is a generalized Haar subspace if and only if PG(ƒ) is strongly unique of order 2 whenever PG(ƒ) is a singleton.
Original Publication Citation
Bartelt, M., & Li, W. (1998). Characterization of generalized Haar spaces. Journal of Approximation Theory, 92(1), 101-115. doi:10.1006/jath.1996.3108
Repository Citation
Bartelt, M. and Li, W., "Characterization of Generalized Haar Spaces" (1998). Mathematics & Statistics Faculty Publications. 141.
https://digitalcommons.odu.edu/mathstat_fac_pubs/141
Comments
Web of Science: :Free full-text from publisher -- Elsevier open archive.
© 1998 Academic Press