Document Type
Conference Paper
Publication Date
2021
DOI
10.1117/12.2584736
Publication Title
Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging, Proceedings of SPIE Vol. 11600
Volume
11600
Pages
1160013
Conference Name
SPIE Medical Imaging, 15-20 February 2021, Online, California
Abstract
Scintigraphy is a common nuclear medicine method to image molecular target’s bio-distribution and pharmacokinetics through the use of radiotracers and gamma cameras. The patient’s images are obtained by using a pair of opposing large flat gamma ray detectors equipped with parallel-hole lead or tungsten collimators that preferentially detect gamma-rays that are emitted perpendicular to the plane of the detector. The resulting images form an anterior/posterior (A/P) planar image pairs. The obtained images are contaminated by noise and contain artifacts caused by gamma-ray attenuation, collimator penetration, scatter and other detrimental factors. Post-filtering of the images can reduce the noise, but at the cost of spatial resolution loss, and cannot remove any of the aforementioned artifacts. In this study, we introduced a new image reconstruction-based method to recover a single corrected planar scintigraphic patient image corrected for attenuation, system spatial resolution and collimator penetration, using the A/P image pair (two conjugated views) as data. To accomplish this task, we used a system model based on the gamma camera detectors physical properties and applied regularization method based on sparse image representation to control noise while preserving spatial resolution. In this proof-of-concept study, we evaluated the proposed approach using simple numerical phantoms. The images were evaluated for simulated lesions images contrast and background variability. Our initial results indicate that the proposed method outperforms the conventional methods. We conclude, that the proposed approach is a promising methodology for improved planar scintigraphic image quality and warrants further exploration.
Rights
Copyright 2021 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.
Original Publication Citation
Charles Ross, S., Matthew, M., Andrzej, K., Howard, G., Lisa, B., Joseph, O. D., Ida, H., Yuesheng, X., & Si, L. (2021). A deblurring/denoising corrected scintigraphic planar image reconstruction model for targeted alpha therapy, In Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor S. Gimi, Andrzej Krol, Proceedings of SPIE Vol. 11600 (SPIE, Bellingham, WA, 2021) 1160013. https://doi.org/10.1117/12.2584736
Repository Citation
Schmidtlein, Charles Ross; Maroun, Matthew; Krol, Andrzej; Gifford, Howard; Bodei, Lisa; O'Donoghue, Joseph; Häggström, Ida; Xu, Yuesheng; and Li, Si, "A Deblurring/Denoising Corrected Scintigraphic Planar Image Reconstruction Model for Targeted Alpha Theory" (2021). Mathematics & Statistics Faculty Publications. 271.
https://digitalcommons.odu.edu/mathstat_fac_pubs/271
Included in
Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Biomedical Engineering and Bioengineering Commons, Medical Toxicology Commons