Document Type

Editorial

Publication Date

2013

DOI

10.1016/j.camwa.2012.12.010

Publication Title

Computers and Mathematics with Applications

Volume

65

Issue

2

Pages

127-128

Abstract

(First paragraph) Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its constituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has usually been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications and the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material properties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived within the macroscopic framework, but the qualitative nature of the macroscopic dynamics is usually insensitive to the details of the underlying microscopic interactions.

Comments

Free full-text from publisher -- Elsevier open archive.

© 2012 Elsevier Ltd. All rights reserved.

Original Publication Citation

Derksen, J., Eskin, D., Luo, L. S., & Krafczyk, M. (2013). Mesoscopic methods in engineering and science. Computers and Mathematics with Applications, 65(2), 127-128. doi:10.1016/j.camwa.2012.12.010

ORCID

0000-0003-1215-7892 (Luo)

Share

COinS