Date of Award
Fall 2017
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Computational Modeling & Simulation Engineering
Program/Concentration
Modeling and Simulation
Committee Director
Masha Sosonkina
Committee Member
Yuzhong Shen
Committee Member
Duc Nguyen
Committee Member
Manwo Ng
Committee Member
Tal Ezer
Abstract
Achieving Exascale computing is one of the current leading challenges in High Performance Computing (HPC). Obtaining this next level of performance will allow more complex simulations to be run on larger datasets and offer researchers better tools for data processing and analysis. In the dawn of Big Data, the need for supercomputers will only increase. However, these systems are costly to maintain because power is expensive. Thus, a better understanding of power and energy consumption is required such that future hardware can benefit.
Available power models accurately capture the relationship to the number of cores and clock-rate, however the relationship between workload and power is less understood. Thus, investigation and analysis of power measurements has been a focal point in this work with the aim to improve the general understanding of energy consumption in the context of HPC.
This dissertation investigates power and energy consumption of many different parallel applications on several hardware platforms while varying a number of execution characteristics. Multicore and manycore hardware devices are investigated in homogeneous and heterogeneous computing environments. Further, common techniques for reducing power and energy consumption are employed to each of these devices.
Well-known power and performance models have been combined to form the Execution-Phase model, which may be used to quantify energy contributions based on execution phase and has been used to predict energy consumption to within 10%. However, due to limitations in the measurement procedure, a less intrusive approach is required.
The Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform analysis technique has been applied in innovative ways to model, analyze, and visualize power and energy measurements. EMD is widely used in other research areas, including earthquake, brain-wave, speech recognition, and sea-level rise analysis and this is the first it has been applied to power traces to analyze the complex interactions occurring within HPC systems.
Probability distributions may be used to represent power and energy traces, thereby providing an alternative means of predicting energy consumption while retaining the fact that power is not constant over time. Further, these distributions may be used to define the cost of a workload for a given computing platform.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/16pe-2f37
ISBN
9780355778250
Recommended Citation
Lawson, Gary D..
"Modeling Energy Consumption of High-Performance Applications on Heterogeneous Computing Platforms"
(2017). Doctor of Philosophy (PhD), Dissertation, Computational Modeling & Simulation Engineering, Old Dominion University, DOI: 10.25777/16pe-2f37
https://digitalcommons.odu.edu/msve_etds/12
ORCID
0000-0002-2956-3611