ORCID
0000-0002-1527-2717(Widner)
Document Type
Article
Publication Date
2-2017
DOI
10.1002/2016GB005407
Publication Title
Global Biogeochemical Cycles
Volume
31
Issue
2
Pages
258-271
Abstract
The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Lodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.
Rights
© 2017. American Geophysical Union. All Rights Reserved.
AGU allows authors to deposit their journal articles if the version is the final published citable version of record, the AGU copyright statement is clearly visible on the posting, and the posting is made 6 months after official publication by the AGU.
Data Availability
Article states: "Hydrographic and nutrient data are freely available at the NOAA NODC archive (NCEI Accession 0128141). All additional data may be obtained from A.R.B. (babbin@mit.edu)" [ORCiD: 0000-0002-5046-0609].
Archived data matching NCEI Accession 0128141 as referenced in article are available online at: https://accession.nodc.noaa.gov/0128141
Original Publication Citation
Babbin, A. R., Peters, B. D., Mordy, C. W., Widner, B., Casciotti, K. L., & Ward, B. B. (2017). Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific. Global Biogeochemical Cycles, 31(2), 258-271. doi:10.1002/2016GB005407
Repository Citation
Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; and Ward, Bess B., "Multiple Metabolisms Constrain the Anaerobic Nitrite Budget in the Eastern Tropical South Pacific" (2017). OES Faculty Publications. 226.
https://digitalcommons.odu.edu/oeas_fac_pubs/226
Included in
Atmospheric Sciences Commons, Biogeochemistry Commons, Environmental Sciences Commons, Oceanography Commons