Document Type

Article

Publication Date

2019

DOI

10.1103/PhysRevLett.122.172502

Publication Title

Physical Review Letters

Volume

122

Issue

17

Pages

172502 (1-8)

Abstract

We measured the triple coincidence A(e,e′n p) and A(e,e′ p p) reactions on carbon, aluminum, iron, and lead targets at Q2 >1.5  (GeV/c)2, xB > 1.1 and missing momentum >400  MeV/c. This was the first direct measurement of both proton-proton (pp) and neutron-proton (np) short-range correlated (SRC) pair knockout from heavy asymmetric nuclei. For all measured nuclei, the average proton-proton (pp) to neutron-proton (np) reduced cross-section ratio is about 6%, in agreement with previous indirect measurements. Correcting for single-charge exchange effects decreased the SRC pairs ratio to ∼3%, which is lower than previous results. Comparisons to theoretical generalized contact formalism (GCF) cross-section calculations show good agreement using both phenomenological and chiral nucleon-nucleon potentials, favoring a lower pp to np pair ratio. The ability of the GCF calculation to describe the experimental data using either phenomenological or chiral potentials suggests possible reduction of scale and scheme dependence in cross-section ratios. Our results also support the high-resolution description of high-momentum states being predominantly due to nucleons in SRC pairs.

Comments

"Yes, the author or the author's employer may use all or part of the APS published article, including the APS-prepared version (e.g., the PDF from the online journal) without revision or modification, on the author's or employer's website as long as a fee is not charged. If a fee is charged, then APS permission must be sought. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included."

© American Physical Society

Original Publication Citation

Duer, M., ..., Weinstein, L. B., ..., Hattawy, M., Hauenstein, F., . . . et al. (2019). Direct observation of proton-neutron short-range correlation dominance in heavy nuclei. Phys Rev Lett, 122(17), 172502 doi:10.1103/PhysRevLett.122.172502

ORCID

0000-0001-5416-2900 (Weinstein), 0000-0003-2243-6836 (Kuhn)

Included in

Nuclear Commons

Share

COinS