Document Type
Article
Publication Date
2021
DOI
10.1103/PhysRevB.103.184518
Publication Title
Physical Review B
Volume
103
Issue
18
Pages
1-19
Abstract
We report numerical simulations of a trapped elastic vortex driven by a strong ac magnetic field H(t)=Hsinωt parallel to the surface of a superconducting film. The surface resistance and the power dissipated by an oscillating vortex perpendicular to the film surface were calculated as functions of H and ω for different spatial distributions, densities, and strengths of pinning centers, including bulk pinning, surface pinning, and cluster pinning. Our simulations were performed for both the Bardeen-Stephen viscous vortex drag and the Larkin-Ovchinnikov (LO) drag coefficient η(v) decreasing with the vortex velocity v. The local residual surface resistance Ri(H) calculated for different statistical realizations of the pinning potential exhibits strong mesoscopic fluctuations caused by local depinning jumps of a vortex segment as H increases, but the global surface resistance ¯Ri(H) obtained by averaging Ri(H) over different pin configurations increases smoothly with the field amplitude at small H and levels off at higher fields. For strong pinning, the LO decrease of η(v) with v can result in a nonmonotonic field dependence of Ri(H) which decreases with H at higher fields, but cause a runaway instability of the vortex in a thick film for weak pinning. It is shown that overheating of a single moving vortex can produce the LO-like velocity dependence of η(v), but can mask the decrease of the surface resistance with H at a higher density of trapped vortices.
Original Publication Citation
Pathirana, W. P. M. R., & Gurevich, A. (2021). Effect of random pinning on nonlinear dynamics and dissipation of a vortex driven by a strong microwave current. Physical Review B, 103(18), Article 184518, 1-19. doi:10.1103/PhysRevB.103.184518
ORCID
0000-0003-0759-8941 (Gurevich)
Repository Citation
Pathirana, W.P.M.R. and Gurevich, Alex, "Effect of Random Pinning on Nonlinear Dynamics and Dissipation of a Vortex Driven by a Strong Microwave Current" (2021). Physics Faculty Publications. 529.
https://digitalcommons.odu.edu/physics_fac_pubs/529
Comments
© 2021 American Physical Society
"Yes, the author or the author's employer may use all or part of the APS published article, including the APS-prepared version (e.g., the PDF from the online journal) without revision or modification, on the author's or employer's website as long as a fee is not charged. If a fee is charged, then APS permission must be sought. In all cases, the appropriate bibliographic citation and notice of the APS copyright must be included."
Publisher's version available at: https://doi.org/10.1103/PhysRevB.103.184518