Document Type
Conference Paper
Publication Date
2022
DOI
10.18429/JACoW-IPAC2022-TUPOTK045
Publication Title
Proceedings of the 13th International Particle Accelerator Conference
Pages
1319-1322
Conference Name
13th International Particle Accelerator Conference, 12-17 June 2022, Bangkok, Thailand
Abstract
Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to study the spatial distribution of trapped flux in 1.3 GHz single-cell cavities. The first result from this newly commissioned system revealed that the trapped flux on the cavity surface might redistribute with increasing RF power. The MFSS was also able to capture significant magnetic field enhancement at specific cavity locations after a quench.
Original Publication Citation
Parajuli, I. P., Ciovati, G., Delayen, J. R., & Gurevich, A. V. (2022). Magnetic field mapping of 1.3 GHz superconducting radio frequency niobium cavities. In F. Zimmerman, H. Tanaka, P. Sudmuang, P. Klysubun, P. Sunwong, T. Chanwattana, C. Petit-Jean-Genaz, & V.R.W. Schaa (Eds.), Proceedings of the 13th International Particle Accelerator Conference (pp. 1319-1322). Joint Accelerator Conferences Website. https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK045
ORCID
0000-0003-0759-8941 (Gurevich)
Repository Citation
Parajuli, Ishwari P.; Ciovati, Gianluigi; Delayen, Jean R.; and Gurevich, Alex V., "Magnetic Field Mapping of 1.3 GHz Superconducting Radio Frequency Niobium Cavities" (2022). Physics Faculty Publications. 692.
https://digitalcommons.odu.edu/physics_fac_pubs/692
Comments
© 2022 by JACoW
Published under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) license.