Date of Award

Summer 2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Teaching and Learning

Program/Concentration

Curriculum and Instruction

Committee Director

Daniel Dickerson

Committee Member

Stephen Burgin

Committee Member

Petros Katsioloudis

Abstract

Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study's findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented.

DOI

10.25777/twkg-7e89

ISBN

9781339126395

Share

COinS