Document Type
Article
Publication Date
2014
Publication Title
American Journal of Respiratory Cell and Molecular Biology
Volume
50
Issue
1
Pages
170-179
DOI
10.1165/rcmb.2012-0496OC
Abstract
Permeability of the endothelial monolayer is increased when exposed to the bacterial endotoxin LPS. Our previous studies have shown that heat shock protein (Hsp) 90 inhibitors protect and restore LPS-mediated hyperpermeability in bovine pulmonary arterial endothelial cells. In this study, we assessed the effect of Hsp90 inhibition against LPS-mediated hyperpermeability in cultured human lung microvascular endothelial cells (HLMVECs) and delineated the underlying molecular mechanisms. We demonstrate that Hsp90 inhibition is critical in the early phase, to prevent LPS-mediated hyperpermeability, and also in the later phase, to restore LPS-mediated hyperpermeability in HLMVECs. Because RhoA is a well known mediator of endothelial hyperpermeability, we investigated the effect of Hsp90 inhibition on LPS-mediated RhoA signaling. RhoA nitration and activity were increased by LPS in HLMVECs and suppressed when pretreated with the Hsp90 inhibitor, 17-allylamino-17 demethoxy-geldanamycin (17-AAG). In addition, inhibition of Rho kinase, a downstream effector of RhoA, protected HLMVECs from LPS-mediated hyperpermeability and abolished LPS-induced myosin light chain (MLC) phosphorylation, a target of Rho kinase. In agreement with these findings, 17-AAG or dominant-negative RhoA attenuated LPS-induced MLC phosphorylation. MLC phosphorylation induced by constitutively active RhoA was also suppressed by 17-AAG, suggesting a role for Hsp90 downstream of RhoA. Inhibition of Src family kinases also suppressed RhoA activity and MLC phosphorylation. Together, these data indicate that Hsp90 inhibition prevents and repairs LPS-induced lung endothelial barrier dysfunction by suppressing Src-mediated RhoA activity and signaling.
Original Publication Citation
Joshi, A.D., Dimitropoulou, C., Thangjam, G., Snead, C., Feldman, S., Barabutis, N., . . . Catravas, J.D. (2014). Heat shock protein 90 inhibitors prevent lps-induced endothelial barrier dysfunction by disrupting rhoa signaling. Am J Respir Cell Mol Biol, 50(1), 170-179. doi: 10.1165/rcmb.2012-0496OC
Repository Citation
Joshi, Atul D.; Dimitropoulou, Christiana; Thangjam, Gagan S.; Snead, Connie; Feldman, Sara; Barabutis, Nektarios; Fulton, David; Hou, Yali; Kumar, Sanjiv; Patel, Vijay; Gorshkov, Boris; Verin, Alexander D.; Black, Stephen M.; and Catravas, John D., "Heat Shock Protein 90 Inhibitors Prevent LPS-Induced Endothelial Barrier Dysfunction by Disrupting Rhoa Signaling" (2014). Bioelectrics Publications. 12.
https://digitalcommons.odu.edu/bioelectrics_pubs/12