Document Type

Article

Publication Date

2016

Publication Title

Molecular Therapy- Nucleic Acids

Volume

5

Pages

1-11

DOI

10.1038/mtna.2016.34

Abstract

In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFN β mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16. F10 cells in culture, IFN beta mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16. F10 cells, inducing effects in vitro and potentially in vivo.

Original Publication Citation

Znidar, K., Bosnjak, M., Cemazar, M., & Heller, L. C. (2016). Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Molecular Therapy-Nucleic Acids, 5, 1-11. doi: 10.1038/mtna.2016.34

Share

COinS