Synthesis and Characterization of 4,6-protected Glucosamine Derivatives and Branched Glycoconjugates
Date of Award
Fall 12-2021
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Chemistry & Biochemistry
Program/Concentration
Chemistry
Committee Director
Guijun Wang
Committee Member
John Cooper
Committee Member
Richard Gregory
Committee Member
Jingdong Mao
Committee Member
Yuan Zhang
Abstract
Low molecular weight gelators (LMWGs) are small molecules that self-assemble in appropriate solvents to form three dimensional networks that immobilize the solvent, creating a supramolecular gel. The self-assembly of LMWGs occurs through non-covalent interactions such as hydrogen bonding, aromatic interactions, donor-acceptor interactions, Van der Waals interactions, hydrophobic forces, halogen bonding, etc. Due to self-assembly occurring through reversible non-covalent interactions, supramolecular gels can undergo a gel to solution transformation. Because of this, these materials can be sensitive to external stimuli such as temperature changes, pH changes, and other stimuli that effect non-covalent interactions. This makes the synthesis of LMWG’s an appealing target for the synthesis of smart materials.
Carbohydrates are an appealing feedstock for the synthesis of LMWGs because of their natural abundance, renewability, biocompatibility, biological activity, biodegradability, structural diversity, and a capacity for chiral self-assembly. The biocompatibility and bioactivity of carbohydrate based LMWGs make them enticing materials for biomedical applications such as drug delivery and tissue engineering. The abundance and renewability make them attractive materials for larger uses, such as environmental remediation. Carbohydrates are an optimal starting material for exploring the gelation-structure relationship because of their structural diversity. Previously, we have had great success in designing carbohydrate based LMWGs via tuning the gelation properties through changing functional groups at various positions on various carbohydrates.
In this research, the structure to gelation properties relationship was explored through the synthesis and characterization of various 4,6-protected glucosamine derivatives and branched glycoclusters. These include 4,6-(1-naphthylidene) protected glucosamine (amide, urea and carbamate) derivatives, 4,6-(4-chlorobenzylidene) protected glucosamine amide derivatives and triazole linked Janus glycoclusters. Preparation of the glucosamine derivatives were carried out using readily available N-acetyl-D-glucosamine and the preparation of the branched glycoconjugates were carried out using both D-glucose and N-acetyl-D-glucosamine, using commercially available pentaerythritol as central scaffold. The design, synthesis, and analysis of the self-assembling properties of the 4,6-protected glucosamine derivatives and Janus glycoclusters will be discussed in Chapters 2, 3, and Chapter 4. A final conclusion and future perspectives are given in Chapter 5.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/2qz8-7v97
ISBN
9798780600848
Recommended Citation
Bietsch, Jonathan.
"Synthesis and Characterization of 4,6-protected Glucosamine Derivatives and Branched Glycoconjugates"
(2021). Doctor of Philosophy (PhD), Dissertation, Chemistry & Biochemistry, Old Dominion University, DOI: 10.25777/2qz8-7v97
https://digitalcommons.odu.edu/chemistry_etds/63
ORCID
0000-0003-3845-8116
Included in
Materials Chemistry Commons, Materials Science and Engineering Commons, Organic Chemistry Commons