Document Type
Article
Publication Date
2015
DOI
10.4172/2167-7662.1000121
Publication Title
Bioenergetics: Open Access
Volume
4
Issue
1
Pages
121 (1-8)
Abstract
The decades-longstanding energetic conundrum of alkalophilic bacteria as to how they are able to synthesize ATP has now, for the first time, been clearly solved using the proton-electrostatics localization hypothesis. This is a major breakthrough advance in understanding proton-coupling bioenergetics over the Nobel-prize work of Peter Mitchell’s chemiosmotic theory. The widespread textbook Mitchellian proton motive force (pmf) equation has now been significantly revised. Use of the newly derived equation results in an overall pmf value (215~233 mV) that is more than 4 times larger than that (44.3 mV) calculated from the Mitchellian equation for the alkalophilic bacteria growing at pH 10.5. This newly calculated value is sufficient to overcome the observed phosphorylation potential ΔGp of −478 mV to synthesize ATP in the bacteria, which can now explain the 30-year-longstanding bioenergetics conundrum. This finding may have fundamental implications not only in the science of bioenergetics but also in understanding the importance of water to life not only as a solvent and substrate but also as a proton conductor for proton coupling energy transduction.
Rights
© 2015 James Weifu Lee
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Original Publication Citation
Lee, J. W. (2015). Proton-electrostatic localization: Explaining the bioenergetic conundrum in alkalophilic bacteria. Bioenergetics: Open Access, 4(1), 1-8, Article 121. https://www.walshmedicalmedia.com/open-access/protonelectrostatic-localization-explaining-the-bioenergetic-conundrum-in-alkalophilic-bacteria-11366.html
ORCID
0000-0003-2525-5870 (Lee)
Repository Citation
Lee, James Weifu, "Proton-Electrostatic Localization: Explaining the Bioenergetic Conundrum in Alkalophilic Bacteria" (2015). Chemistry & Biochemistry Faculty Publications. 258.
https://digitalcommons.odu.edu/chemistry_fac_pubs/258
Included in
Atomic, Molecular and Optical Physics Commons, Bioelectrical and Neuroengineering Commons, Organic Chemistry Commons