Document Type
Article
Publication Date
2012
DOI
10.1029/2011JD016621
Publication Title
Journal of Geophysical Research: Atmospheres
Volume
117
Issue
5
Pages
D05303 (1-26)
Abstract
The goal of this study is to determine how H2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity.
Rights
© 2012 American Geophysical Union
"AGU allows the final published article (version of record) to be placed in an institutional repository or personal website if the AGU copyright statement is clearly visible, and the post is made 6 months after the official publication by AGU. AGU also supports governmental and institutional repositories and access is available to AGU content through CHORUS, usually 12 months after publication."
Original Publication Citation
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D., Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., . . . Sturm, C. (2012). Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research: Atmospheres, 117(5), 1-26, Article D05303. https://doi.org/10.1029/2011JD016621
ORCID
0000-0002-1255-396X (Bernath)
Repository Citation
Risi, Camille; Noone, David; Worden, John; Frankenberg, Christian; Stiller, Gabriele; Kiefer, Michael; Funke, Bernd; Walker, Kaley; Bernath, Peter; Schneider, Matthias; Wunch, Debra; Sherlock, Vanessa; Deutscher, Nicholas; Griffith, David; Wennberg, Paul O.; Strong, Kimberly; Smale, Dan; Mahieu, Emmanuel; Barthlott, Sabine; Hase, Frank; García, Omaira; Notholt, Justus; Warneke, Thorsten; Toon, Geoffrey; Sayres, David; Bony, Sandrine; Lee, Jeonghoon; Brown, Derek; Uemura, Ryu; and Sturm, Christophe, "Process-Evaluation of Tropospheric Humidity Simulated By General Circulation Models Using Water Vapor Isotopologues: 1. Comparison Between Models and Observations" (2012). Chemistry & Biochemistry Faculty Publications. 268.
https://digitalcommons.odu.edu/chemistry_fac_pubs/268
Included in
Earth Sciences Commons, Environmental Chemistry Commons, Oceanography and Atmospheric Sciences and Meteorology Commons