Document Type
Article
Publication Date
2014
DOI
10.1155/2014/654790
Publication Title
Mathematical Problems in Engineering
Volume
2014
Pages
654790 (1-14)
Abstract
Background subtraction is often considered to be a required stage of any video surveillance system being used to detect objects in a single frame and/or track objects across multiple frames in a video sequence. Most current state-of-the-art techniques for object detection and tracking utilize some form of background subtraction that involves developing a model of the background at a pixel, region, or frame level and designating any elements that deviate from the background model as foreground. However, most existing approaches are capable of segmenting a number of distinct components but unable to distinguish between the desired object of interest and complex, dynamic background such as moving water and high reflections. In this paper, we propose a technique to integrate spatiotemporal signatures of an object of interest from different sensing modalities into a video segmentation method in order to improve object detection and tracking in dynamic, complex scenes. Our proposed algorithm utilizes the dynamic interaction information between the object of interest and background to differentiate between mistakenly segmented components and the desired component. Experimental results on two complex data sets demonstrate that our proposed technique significantly improves the accuracy and utility of state-of-the-art video segmentation technique. © 2014 Adam R. Reckley et al.
Original Publication Citation
Reckley, A. R., Hsu, W. W., Chen, C. H., Ma, G., & Huang, E. W. (2014). Sensor selection and integration to improve video segmentation in complex environments. Mathematical Problems in Engineering, 2014, 654790. doi:10.1155/2014/654790
Repository Citation
Reckley, Adam R.; Hsu, Wei-Wen; Chen, Chung-Hao; Ma, Gangfeng; and Huang, E-Wen, "Sensor Selection and Integration to Improve Video Segmentation in Complex Environments" (2014). Electrical & Computer Engineering Faculty Publications. 79.
https://digitalcommons.odu.edu/ece_fac_pubs/79
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Mathematics Commons
Comments
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0/