Date of Award

Summer 2015

Document Type


Degree Name

Doctor of Philosophy (PhD)


Engineering Management & Systems Engineering

Committee Director

Ghaith Rabadi

Committee Member

Resit Unal

Committee Member

Pilar Pazos

Committee Member

Christopher Garcia


This dissertation focuses on advancing the Metaheuristic for Randomized Priority Search algorithm, known as Meta-RaPS, by integrating it with machine learning algorithms. Introducing a new metaheuristic algorithm starts with demonstrating its performance. This is accomplished by using the new algorithm to solve various combinatorial optimization problems in their basic form. The next stage focuses on advancing the new algorithm by strengthening its relatively weaker characteristics. In the third traditional stage, the algorithms are exercised in solving more complex optimization problems. In the case of effective algorithms, the second and third stages can occur in parallel as researchers are eager to employ good algorithms to solve complex problems. The third stage can inadvertently strengthen the original algorithm. The simplicity and effectiveness Meta-RaPS enjoys places it in both second and third research stages concurrently. This dissertation explores strengthening Meta-RaPS by incorporating memory and learning features. The major conceptual frameworks that guided this work are the Adaptive Memory Programming framework (or AMP) and the metaheuristic hybridization taxonomy. The concepts from both frameworks are followed when identifying useful information that Meta-RaPS can collect during execution. Hybridizing Meta-RaPS with machine learning algorithms helped in transforming the collected information into knowledge. The learning concepts selected are supervised and unsupervised learning. The algorithms selected to achieve both types of learning are the Inductive Decision Tree (supervised learning) and Association Rules (unsupervised learning). The objective behind hybridizing Meta-RaPS with an Inductive Decision Tree algorithm is to perform online control for Meta-RaPS' parameters. This Inductive Decision Tree algorithm is used to find favorable parameter values using knowledge gained from previous Meta-RaPS iterations. The values selected are used in future Meta-RaPS iterations. The objective behind hybridizing Meta-RaPS with an Association Rules algorithm is to identify patterns associated with good solutions. These patterns are considered knowledge and are inherited as starting points for in future Meta-RaPS iteration. The performance of the hybrid Meta-RaPS algorithms is demonstrated by solving the capacitated Vehicle Routing Problem with and without time windows.