Predictions of Knee Joint Contact Forces Using Only Kinematic Inputs with a Recurrent Neural Network
Date of Award
Spring 2021
Document Type
Thesis
Degree Name
Master of Science in Education (MSEd)
Department
Human Movement Sciences
Program/Concentration
Exercise Science
Committee Director
Hunter J. Bennett
Committee Member
Rumit Singh Kakar
Committee Member
Stacie Ringleb
Committee Member
Kevin Valenzuela
Abstract
BACKGROUND: Knee joint contact (bone on bone) forces are commonly estimated using surrogate measures such as external knee adduction moments (with limited success) or musculoskeletal modeling (more successful). Despite its capabilities, modeling is not optimal for clinicians or persons with limited experience and knowledge. Therefore, the purpose of this study was to design a novel prediction method for knee joint contact forces that is equal or more accurate than modeling, yet simplistic in terms of required inputs. METHODS: This study included all six subjects’ (71.3±6.5kg, 1.7±0.1m) data from the opensource “Grand Challenge” datasets (simtk.org) and two subjects from the "CAMS" datasets, consisting of motion capture and in-vivo instrumented knee prosthesis data (e.g. true knee joint contact forces). Inverse kinematics were used to derive three-dimensional hip, two-dimensional knee (sagittal & frontal), and one-dimensional ankle (sagittal) kinematics during the stance phase of normal walking for all subjects. Medial and lateral knee joint contact forces (normalized to body weight) and inverse kinematics were imported into MATLAB and normalized to 101 data points. A long-short term memory network (LSTM) was created to predict knee forces using combinations of the kinematics inputs. The Grand Challenge data were used for training, while the CAMS data were used for testing. Waveform accuracy was explained by the proportion of variance and root mean square error between network predictions and in-vivo knee joint contact forces data. RESULTS: The top five networks demonstrated excellent fit with the training data, achieving RMSE < 0.26BW for medial and lateral forces, R2 > 0.69 for medial forces, but only R2 > 0.15 for lateral forces. The overall best-selected network contained frontal hip and knee, and sagittal hip and ankle input variables and presented the finest visual waveform agreement with the in vivo data (R2=0.77, RMSE=0.27). CONCLUSIONS: The LSTM network designed in this study revealed knee joint forces could accurately be predicted by using only kinematic input variables. The network’s results outperformed most reports of root mean squared errors and correlation coefficients attained by musculoskeletal modeling and surrogate measures of KAMs.
Rights
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/ This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
DOI
10.25777/k00n-6211
ISBN
9798516056420
Recommended Citation
Estler, Kaileigh E..
"Predictions of Knee Joint Contact Forces Using Only Kinematic Inputs with a Recurrent Neural Network"
(2021). Master of Science in Education (MSEd), Thesis, Human Movement Sciences, Old Dominion University, DOI: 10.25777/k00n-6211
https://digitalcommons.odu.edu/hms_etds/52
Included in
Biomechanics Commons, Biomedical Engineering and Bioengineering Commons, Computer Sciences Commons