Document Type
Article
Publication Date
2009
DOI
10.1063/1.3122594
Publication Title
Biomicrofluidics
Volume
3
Issue
2
Pages
022404 (1-14)
Abstract
Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then decelerated in the diverging region, with the maximum translational velocity at the throat. For particles with diameters close to the width of the channel throat, the usual acceleration process is divided into three stages: Acceleration, deceleration, and reacceleration instead of a monotonic acceleration. Moreover, the maximum translational velocity occurs at the end of the first acceleration stage rather than at the throat. Along the centerline of the microchannel, particles do not rotate, and the closer a particle is located near the channel wall, the higher is its rotational velocity. Analysis of the transport of two particles demonstrates the feasibility of using a converging-diverging microchannel for passive (biological and synthetic) particle separation and ordering. © 2009 American Institute of Physics.
Original Publication Citation
Ai, Y., Joo, S. W., Jiang, Y. T., Xuan, X. C., & Qian, S. Z. (2009). Pressure-driven transport of particles through a converging-diverging microchannel. Biomicrofluidics, 3(2), 022404. doi:10.1063/1.3122594
Repository Citation
Ai, Ye; Joo, Sang W.; Xuan, Xiangchun; and Qian, Shizhi, "Pressure-Driven Transport of Particles Through a Converging-Diverging Microchannel" (2009). Mechanical & Aerospace Engineering Faculty Publications. 32.
https://digitalcommons.odu.edu/mae_fac_pubs/32
Included in
Biochemistry Commons, Biological and Chemical Physics Commons, Biophysics Commons, Fluid Dynamics Commons, Molecular Biology Commons, Nanoscience and Nanotechnology Commons